a2 United States Patent

Morita

US009262128B2

US 9,262,128 B2
Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) INFORMATION PROCESSING APPARATUS,
INFORMATION PROCESSING METHOD AND
COMPUTER PROGRAM

(735)

Inventor: Tadashi Morita, Tokyo (JP)

(73)

")

Assignee: SONY CORPORATION, Tokyo (JP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

@
(22)

Appl. No.: 14/130,023

PCT Filed: Jun. 29, 2012

(86) PCT No.:

§371 (D),
(2), (4) Date:

PCT/IP2012/066721

Dec. 30,2013

(87) PCT Pub. No.: W02013/008650

PCT Pub. Date: Jan. 17,2013

(65) Prior Publication Data

US 2014/0136854 Al May 15, 2014

(30) Foreign Application Priority Data

Jul. 8,2011 (IP) cooovovveeeecceceeee e 2011-152105
(51) Int.CL
HO4L 29/00
GOGF 9/44
GOGF 21/60
GOGF 9/455
USS. CL
CPC .. GOGF 8/31 (2013.01); GOGF 8/30 (2013.01);
GOGF 9/4423 (2013.01); GOGF 9/45508

(2013.01); GOGF 21/602 (2013.01)

{ START EDITOR 811

512

(2006.01)
(2006.01)
(2013.01)
(2006.01)
(52)

1

(58) Field of Classification Search

.................................. HO04L 9/00; GOGF 12/14
USPC 713/189
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,516,458 B2 82013 Stewart et al.
2006/0218196 Al 9/2006 Kurita
2011/0276806 Al* 11/2011 Casper et al. 713/189
2013/0339750 Al* 12/2013 Amitetal. ... 713/189

FOREIGN PATENT DOCUMENTS

Jp 3-92931 4/1991
Jp 2011-027625 A 2/2011
(Continued)
OTHER PUBLICATIONS

Takashi Yuasa, “S Shiki no Tameno Moji Tanmatsu-yo Interface”,
IPSJ SIG Notes, Mar. 12, 1990, vol. 90, No. 22 (90-SYM-54), pp. 1
to 8 (particularly, ‘5.1 Kansu inspect ni yoru Object Chosa’).

(Continued)

Primary Examiner — Jeftrey Pwu
Assistant Examiner — Michael D Anderson
(74) Attorney, Agent, or Firm — Hazuki International, LL.C

(57) ABSTRACT

Provided is an information processing apparatus including a
program execution unit configured to read, interpret and
execute a code of a computer program that is created in a
procedural language, and a backup unit configured to create a
backup in a format in which a variable definition and a func-
tion definition in the code being executed by the program
execution unit are interpretable as a code in the procedural
language.

8 Claims, 11 Drawing Sheets

ENDEDITOR 513

{ START SCRIPT) 821

/
¥ = READ READ
ol | EDITFILE | e PRgﬁgAM ~—»! | ReADPROGRAM | |52

!

SETVARIABLE, | |-S23
SET KEY
v .
[T oemuc 1752
L oss

ALTER?

No

GSE PROGRA [s28

END SCRIPT 527

US 9,262,128 B2
Page 2

(56)

JP
WO

References Cited

FOREIGN PATENT DOCUMENTS

2011-513824 A 4/2011
2005/121976 Al 12/2005

OTHER PUBLICATIONS

Yuasa, Kei, Character Terminal Interface for S-expression, Tokyo
Research Laboratory Matsushita Electric Industrial Co. Ltd. 3-10-1
Higashimita Tama-ku Kawasaki 214 Japan; pp. 1-8, Mar. 12, 1990.

* cited by examiner

US 9,262,128 B2

Sheet 1 of 11

Feb. 16, 2016

U.S. Patent

75— 1dMOSONZ)
Y

97S— NYEOCH 380

ON

3Ly

59}

G3S

Yy wmmmm

AZA 138
£¢S- ‘FIGVIIVA 138

1

WYEDONd Ov3Y
m avay

)

4eS

126 —{(1diHi0S Luv1s)

e1s—{ ¥oLaa aNa)
ln!lltl..\\!]l!llx 11
e =
< . T34 103
NYH90Hd Qv ——
(AR .
15 —(¥0LIa3 LAviS)
L4

US 9,262,128 B2

Sheet 2 of 11

Feb. 16, 2016

U.S. Patent

0Gi
\
NWYUAN
&
SNLVHYddY
SOYHOLS wl 1NN 3NN
TYNY3IXT d
x % ki ¥ \
081 Y e MOILdAMOIG 0ol
NCELZAMONS Ad0
/ / 7 7 . LIND
O%i 0El 001 01l %ﬁmwmm
/
DLt

e T

¢ Ol

U.S. Patent Feb. 16, 2016 Sheet 3 of 11 US 9,262,128 B2

» NAME (pname) -~ 401

 VARIABLE DEFINITION {valug) 402

. FUCTION DEFINITION (function) 403

« SECURITY ATTRIBUTE 404

FIG.4 410
F
411 412
/ /
car(cdr(}
carl cdrl
card edr?
card cdrd
card cdrd
card cdra
carf cdrb
car’ cdr?
card cdr@
carl adrd

U.S. Patent Feb. 16, 2016 Sheet 4 of 11 US 9,262,128 B2

FIG.5
420
,é/’/
eval 421
Setq —-"'“422
cons 423
defun - 424
osaifu 428
FIG.6
430
;f’/

keyl, kvl 431

key2, kv2 [-432

key3d, kvd 433

keyd, kvd 434

keyh, kvb -~ 435

US 9,262,128 B2

Sheet 5 of 11

Feb. 16, 2016

U.S. Patent

%l A ‘oA 114
X A pAey T vey
K ony ‘ghay | EEF
O | zmizaen ;7
O e LAY ‘| i k\- %4 O e gieD
7 DIPs QIBs
*e
™ 1po 2o
0Ey P L
adAy gipo 4 glen _AJ
Aunoes L aapo GieD et
/] |
uopour; |—i / AL yapo pies <]
= P
o sweud b |— \\\ ” ips e
L 64 = \\\\\\ Lpo_ 148D e
O S WS S E owe | oy
07y SUOO - sueud b ¢ty ,.ftuw\\\ms\ W,,w 5
VA4 byes e M«M o 4\\\\ww\\\\w\\\\\ iy \
VA feAD e %\\\\\W\\x\
e O#
y 4 gueud
e
oy G [OQUIAS
ooy L5k

U.S. Patent

Feb. 16, 2016 Sheet 6 of 11

US 9,262,128 B2

FIG.8
110
{J
PROGRAM EXECUTION UNJT -~ 112
BACKUP UNIT 114
116

RESTORING UNIT

U.S. Patent Feb. 16, 2016 Sheet 7 of 11 US 9,262,128 B2

FIG.9

;
READ SCRIPT INTERPRETATION L ~§101
AND EXECUTION MODULE

JS1 02
No _.—" AREBACKUP
< DATA PRESENEME,M)

-«"'ﬂ-’f
Yes

DECRYPT AND READ L5103
BACKED-UP SOURCE CODE

e

i
CREATE ORALTERSOURCE Cop [=104

¥
EXECUTE PROGRAM BY L5105
READ-EVAL-PRINT LOOP

S106

v _— ISBACKUP ~~—

<___ INSTRUCTION GIVEN? =
\ e

..-*"""'-J/‘"ﬂ

IYes
BACK UR, ENCRYPT AND WRITE L-S107
SQURCE CODE

¥

POWER OFF)

U.S. Patent Feb. 16, 2016 Sheet 8 of 11 US 9,262,128 B2

FIG.10A

laddd | o—t—sf © [o> 0 |

Lol x | ot 3 [~

FIG.10B

(= o[

FIG.10C

US 9,262,128 B2

Sheet 9 of 11

Feb. 16, 2016

U.S. Patent

NOLLOMALSNI NOLLND 3K NOILONNA
JH01834 1NN AVEO0Hd

\\u\...ltt .l.lclr‘l.ff.l.f P o

- j// pra

",

™,

3000 KYEO0Hd TINCOW NOKLMOZXS ANV)
\ NOILYLZYJHTINI 11808 J
| AVidsia
e
..ls.r.ll}.ul..l....\\\\
dOVE INdENO LS

PRSI

US 9,262,128 B2

Sheet 10 of 11

Feb. 16, 2016

U.S. Patent

SNLYHYddY
S4OVHCLS
TYNGHALXS
/
maw 061
5
WYHAN
&
LINDY LNdN
g 7 7 k ,
Y NOH NOILJAYO3W 091
; NOLLdAHTONT fd0 N
/ / / 2 e
43741 %1 gei 0Lt \wﬁmmmm
{
AT
\,\x
0%
AN

US 9,262,128 B2

Sheet 11 of 11

Feb. 16, 2016

U.S. Patent

625 126
Y 3
SALYHYddY W3
GILOINNGD | | ONIGNOOTY
ATTVNYEIXT | | T19YACWTY
X &
4 i
SNLYHYddY 1H0d _— (QOH) SNLYMVAdY | 18N1YEvddy| 1snivavddy! [snivdyddy
NOILYOINMAWINGD | | NOILOANNGD IOVHOLS ONISY NdiNG 1NN
w, ES \ »\ & \ 2 / % 14 m_
576 £Z6 4 126 615 o 818 115 516
IOVTING
£16 ;
< “\ ==
116 '
390144
7 1
606 ;
A £ \ Aw F v
: L6 % 3
WY WO nd
/ / /
506 £05 106
7
ool eLs5l4

US 9,262,128 B2

1
INFORMATION PROCESSING APPARATUS,
INFORMATION PROCESSING METHOD AND
COMPUTER PROGRAM

CROSS-REFERENCE TO RELATED
APPLICATION

The present application is a national phase entry under 35
U.S.C. §371 of International Application No. PCT/JP2012/
066721 filed Jun. 29,2012, published on Jan. 17,2013, as WO
2013/008650 A1, which claims priority from Japanese Patent
Application No. JP 2011-152105 filed in the Japanese Patent
Office on Jul. 8, 2011.

TECHNICAL FIELD

The present invention relates to an information processing
apparatus, an information processing method and a computer
program.

BACKGROUND ART

In procedural programming languages such as LISP, Ruby
and Python, the definition information about variables and
functions is read at the time of execution of a program, and the
program is executed based on the read function definitions
and variable values. The software for interpreting and execut-
ing such a procedural programming language reads an appli-
cation program that is described in the procedural program-
ming language, at every time of startup, and thereafter,
processes input data and outputs a processing result in accor-
dance with the read application program.

As a feature of the software for interpreting and executing
a procedural programming language, once a defined variable
name is input, the content of the variable can be read out, and
once a function for reading a defined function is input, the
function code can be output.

CITATION LIST
Patent Literature

Patent Literature 1: National Publication of International
Patent Application No. 2011-513824

Patent Literature 2: International Publication No. WO
2005/121976

SUMMARY OF INVENTION
Technical Problem

A feature of the software for interpreting and executing a
procedural programming language is to have means by which
once a defined variable name is input, the content of the
variable is read out, and once a function for reading a defined
function is input, the function code is output. However, when
the output information is input with no change, the software
has not been able to interpret it similarly to the original
definitional expression.

For creating a program, typically, an editing program for
editing the program is started, and a source code of the pro-
gram is described, so that a file in which the source code of the
program is described is created. Thereafter, a processing pro-
gram for interpreting the source code is started, and the pro-
gram is executed, and then, if the program needs to be modi-
fied, the editing using the editing program is repeated again.

10

15

20

25

30

35

40

45

50

55

60

65

2

Thus, there is a need for multiple steps in which an editing and
a modifying are repeated, before the program can be actually
used.

Hence, the present disclosure has been made in view of the
above problem. An object of the present disclosure is to
provide a novel and improved information processing appa-
ratus, information processing method and computer program
that make it possible to easily perform a development in a
procedural programming language.

Solution to Problem

According to an embodiment of the present disclosure,
there is provided an information processing apparatus includ-
ing a program execution unit configured to read, interpret and
execute a code of a computer program that is created in a
procedural language, and a backup unit configured to create a
backup in a format in which a variable definition and a func-
tion definition in the code being executed by the program
execution unit are interpretable as a code in the procedural
language.

According to the present disclosure, a program execution
unit reads, interprets and executes a code of a computer pro-
gram that is created in a procedural language. Then, a backup
unit creates a backup in a format in which a variable definition
and a function definition in the code being executed by the
program execution unit is interpretable as a code in the pro-
cedural language. Accordingly, while a program is being
executed by the program execution unit based on the code, the
direct variable definition and the function definition are modi-
fied so that these definitions can be backed up and the code
can be read again in a shorter time. It becomes possible to
easily perform a development in a procedural programming
language.

According to the present disclosure, there is provided an
information processing method including interpreting and
executing a code of a computer program that is created in a
procedural language, and creating a backup in a format in
which a variable definition and a function definition in the
code being executed is interpretable as a code in the proce-
dural language.

According to the present disclosure, there is provided a
computer program for causing a computer to execute inter-
preting and executing a code of a computer program that is
created in a procedural language, and creating a backup in a
format in which a variable definition and a function definition
in the code being executed are interpretable as a code in the
procedural language.

Advantageous Effects of Invention

As described above, according to the present disclosure, it
is possible to provide a novel and improved information pro-
cessing apparatus, information processing method and com-
puter program that make it possible to easily perform a devel-
opment in a procedural programming language.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is an explanatory diagram showing a flow of a
conventional program development model.

FIG. 2 is an explanatory diagram showing a functional
configuration of an information processing system 10 accord-
ing to an embodiment of the present disclosure.

FIG. 3 is an explanatory diagram showing a data structure
that can be defined by a list processing module and is called a
symbol.

US 9,262,128 B2

3

FIG. 4 is an explanatory diagram showing an exemplary
configuration of cons cells 410 for constructing a list struc-
ture.

FIG. 5 is an explanatory diagram showing an exemplary
structure of a name storage table 420 for storing a name that
is stored in a name region 401 of the symbol 400.

FIG. 6 is an explanatory diagram showing an exemplary
structure of an authentication key table 430 for storing an
authentication key.

FIG. 7 is an explanatory diagram showing a correspon-
dence relation of the symbol shown in FIG. 3, the cons cell
shown in FIG. 4, the name storage table shown in FIG. 5, and
the authentication key table shown in FIG. 6.

FIG. 8 is an explanatory diagram showing a functional
configuration of'a CPU 110 according to an embodiment of
the present disclosure.

FIG. 9 is a flowchart showing a behavior of an information
processing apparatus 100 according to an embodiment of the
present disclosure.

FIG. 10A is an explanatory diagram showing an example
of an internal representation.

FIG. 10B is an explanatory diagram showing an example of
an internal representation.

FIG. 10C is an explanatory diagram showing an example of
an internal representation.

FIG. 11 is an explanatory diagram showing a program
development model by an information processing apparatus
100 according to an embodiment of the present disclosure.

FIG. 12 is an explanatory diagram showing a functional
configuration of an information processing system 10'
according to an embodiment of the present disclosure.

FIG. 13 is an explanatory diagram showing a hardware
configuration of the information processing apparatus 100
according to an embodiment of the present disclosure.

DESCRIPTION OF EMBODIMENTS

Hereinafter, preferred embodiments of the present inven-
tion will be described in detail with reference to the appended
drawings. Note that, in this specification and the drawings,
elements that have substantially the same function and struc-
ture are denoted with the same reference signs, and repeated
explanation is omitted.

Descriptions will be given in the following order.
<1. Conventional program development model>
<2. An embodiment of the present disclosure>
[2-1. Functional configuration of information processing sys-

tem]

[2-2. Exemplary program structure]

[2-3. Behavior of information processing apparatus]|

[2-4. Modifications]

[2-5. Hardware configuration of information processing
apparatus|

<3. Conclusion>

<1. Conventional Program Development Model>

Before preferred embodiments of the present disclosure
are described in detail, first, a conventional program devel-
opment model and problems thereof will be described. FIG. 1
is an explanatory diagram showing a flow of a conventional
program development model, which is implemented based on
a technology that the present discloser discloses in Japanese
Patent Application No. 2011-027625. In the following, the
conventional program development model will be described
using FIG. 1.

For creating a source code of a program, first, a creator of
the source code starts an editor for editing the source code
(step S11), and using the started editor, edits a program file 1

10

20

25

30

35

40

45

50

55

60

4

in which the source code is to be described (step S12). When
the creator of the source code has finished the editing of the
program file 1 using the editor, the creator of the source code
exits the editor (step S13).

Oncethe creator of the source code has created the program
file 1 in which the source code is described, the source code
described in the program file 1 is interpreted by a program
(script) for interpreting the source code, and a process based
on the source code is executed. Once the script is started (step
S21), the script reads the program file 1 (step S22), and then,
sets variables described in the program file 1 and sets keys for
using the variables (step S23). These variable setting and key
setting are based on the technology that the present discloser
discloses in Japanese Patent Application No. 2011-027625.

Once the program is read by the script and the variable
setting and key setting are performed, the program is
debugged (step S24). As a result of the debug, whether the
program needs to be altered is judged (step S25), and if the
judgment that the program needs to be altered is made, the
creator of the source code goes back to the editing of the
program file 1 in which the source code is described, again.
On the other hand, if the judgment that the program does not
need to be altered is made, the program is used with no change
(step S26). Then, the script is exited for ending the use of the
program (step S27).

Thus, conventionally, the development of a program is
performed by repeating the editing of the source code and the
debug of the program. However, in such a program develop-
ment model, it is impossible to perform a debug in a state in
which the program file 1 is read in the script, and for modi-
fying the source code, it is necessary to start the editor again
and go back to the editing of the source code with the editor.
Therefore, in the conventional program development model,
it is impossible to perform a prompt debug. Also, when
intending to add a function to the program, similarly, it is
necessary to go back to the editing of the source code, and a
successive-addition-type program development is impos-
sible.

Furthermore, there is also a problem in that when the script
reads the source code once, it is impossible to restore the
original definition. For example, suppose the case where, in
Scheme that is a script language of the Lisp family, using the
“define” for defining the value of a variable, the value of a
variable a is defined as (define a 123). In this case, after a
reading of the above source code “(define a 123)”, if the “a”
is input for referring the value of the variable a, the “123” that
is the value stored in the variable a is returned. However, after
the source code is once read, even if attempting to restore the
definitional expression of the variable a from The variable a
and its value, it is impossible to restore the (define a 123) that
is the original definitional expression.

Similarly, in the case of a function, for example, a function
“add3” can be defined as (define (add3 x) (+x3)), but even if
inputting a code readout function, the original definitional
expression is not restored. For example, in the case of a
function, although there is a command “get-closure-code”
that allows for an acquisition of a program code as data in
Scheme, even if executing this command, in the above func-
tion “add3”, the (get-closure-code add3)=>(lambda (x) (+x
3)), which is a definitional expression different from the
above-described original definitional expression, is acquired.

In a system by the technology that the present discloser
discloses in Japanese Patent Application No. 2011-027625, it
is possible to partially modify a program anytime, and to
freely read out the source code of the program and the values
of the internal variables. In the technology that the present
discloser discloses in Japanese Patent Application No. 2011-

US 9,262,128 B2

5

027625, a security measure is taken in a tamper resistant IC
chip, by a security flag, encrypted communication means and
a non-volatile memory. However, in a large-scale system, a
high-capacity non-volatile memory is expensive, and a need
to take a security measure at a lower cost is desired.

However, in the above technology, the software for inter-
preting and executing the script requires steps for reading the
script program at every time of startup, interpreting the con-
tent of the script to replace it with an internal expression, and
thereafter performing many security settings such as secret
keys. Thereby, there are concerns that procedures after startup
are complicated, and the script program to be read and the
secret keys need to be strictly managed.

For example, as disclosed in Patent Literature 2, a technol-
ogy for encrypting and saving the internal information of an
apparatus has been developed. However, in this technology,
in which program data are saved in the interior of the appa-
ratus using a non-volatile memory, the saving is limited to
resulting data by a program behavior, and dynamic alterations
of'the program are not considered. Therefore, this technology
cannot solve the above-described problems in a configuration
with no structure for saving the program to a non-volatile
memory.

Hence, in an embodiment of the present disclosure
described hereinafter, a technology in which, even after the
source code is once read in the script and further the source
code is altered, the up-to-date source code can be restored,
will be described. Furthermore, a technology that, by simpli-
fying procedures after startup, makes it possible to faster the
restart of the program, compared to the technology that the
present discloser discloses in Japanese Patent Application
No. 2011-027625, will be described.
<2. An Embodiment Of The Present Disclosure>
[2-1. Functional Configuration of Information Processing
System]

First, a functional configuration of an information process-
ing system according to an embodiment of the present dis-
closure will be described. FIG. 2 is an explanatory diagram
showing the functional configuration of the information pro-
cessing system 10 according to an embodiment of the present
disclosure. In the following, the functional configuration of
the information processing system 10 according to an
embodiment of the present disclosure will be described using
FIG. 2.

As shown in FIG. 2, the information processing system 10
according to an embodiment of the present disclosure is con-
figured to include an information processing apparatus 100 to
execute a program, an NVRAM (Non Volatile Rondom
Access Memory) 150, an input unit 160, a display unit 170
and an external storage apparatus 180.

The information processing apparatus 100 is configured so
as to be capable of interpreting and executing a procedural
programming language. Examples of such a programming
language include LISP, Scheme, Ruby and Python.

As shown in FIG. 2, the information processing apparatus
100 is configured to include a CPU (Central Prosessing Unit)
110, an encryption/decryption unit 120, a ROM 130 and a
RAM 140.

The CPU 110 controls the behavior of the information
processing apparatus 100, and by executing a readout com-
mand of operating system software that is previously
recorded in the ROM 130, can execute the operating system.
In the execution of the operating system, the CPU 110 can use
the RAM 140 as a work area. Here, the operating system
software recorded in the ROM 130 is, for example, one that
can interpret and execute a procedural programming lan-
guage as described above. In the present disclosure, it is

25

35

40

45

50

6

allowable to be such a manner that a procedural program is
read from the external storage apparatus 180 to be executed.

As for a program to be read from the ROM 130 of the
information processing apparatus 100 according to the
embodiment, a program to which a security feature is added
along with a processing as an interpreter that is a basic feature
for the above procedural programming language, is stored.
Thereby, when embedding an application program to the
information processing apparatus 100, it is unnecessary to
compile it in advance, and since the security feature is added,
the debug can be performed in the information processing
apparatus 100 itself in which the application is utilized. This
leads to a reduction of development steps and allows the
application program to be developed in a short period.

The encryption/decryption unit 120 performs an encryp-
tion process for input data using a designated key to output it,
and performs a decryption process for input encryption data
using a designated key to output it. In the embodiment, a
source code is encrypted when the source code is saved to the
external storage apparatus 180, and the source code that is
stored in the external storage apparatus 180 in a state of being
encrypted is decrypted. The key that the encryption/decryp-
tion unit 120 uses for the encryption and decryption of the
source code is stored in the NVRAM 150.

The input unit 160 is connected to the information process-
ing apparatus 100, and receives an input operation to the
information processing apparatus 100 by a user. The input
unit 160 may be constituted by, for example, a keyboard, a
mouse, a touch panel and the like. The display unit 170 is
connected to the information processing apparatus 100, and
displays an information processing result in the CPU 110 of
the information processing apparatus 100, based on a process
of'the CPU 110. The display unit 170 may be constituted by,
for example, a flat display device such as a liquid-crystal
display and an organic EL display.

The external storage apparatus 180 is connected to the
information processing apparatus 100, and stores various data
that are used in the information processing apparatus 100.
The display unit 170 may be constituted by a hard disk, for
example.

In the embodiment, a script interpretation and execution
module (referred to as a “list processing module”, also) that
can interpret and execute the procedural programming lan-
guage, and a source code that the script interpretation and
execution module reads and executes, are stored in the exter-
nal storage apparatus 180. This source code is stored in a state
of being encrypted by the encryption/decryption unit 120.
Since the source code is stored in the external storage appa-
ratus 180 in a state of being encrypted by the encryption/
decryption unit 120, it is possible to enhance the confidenti-
ality of the source code.

In FIG. 2, the NVRAM 150, the input unit 160 and the
display unit 170 are shown so as to be provided in the exterior
of the information processing apparatus 100, but the present
disclosure is not limited to this example. That is, at least one
of' the NVRAM 150, the input unit 160 and the display unit
170 may be configured to be provided in the interior of the
information processing apparatus 100. So far, the hardware
configuration of the information processing apparatus 100
according to an embodiment of the present invention has been
described using FIG. 2. Next, a structure of a computer pro-
gramthat is executed by the information processing apparatus
100 shown in FIG. 2, will be described.

[2-2. Exemplary Program Structure]

FIGS. 3 to 6 are explanatory diagrams showing an exem-
plary structure of a computer program that is executed by the
information processing apparatus 100 according to an

US 9,262,128 B2

7

embodiment of the present invention. In the following, an
exemplary structure of the computer program that is executed
by the information processing apparatus 100 according to an
embodiment of the present invention will be described using
FIGS. 3 to 6.

Hereinafter, if not otherwise specified, descriptions will be
given on the premise that the language of the computer pro-
gram that is executed by the information processing apparatus
100 is LISP. However, in the present disclosure, a language
that can be used as the computer language is not limited to this
example, and it is allowable to be any procedural program-
ming language if it allows for a configuration in which the
security can be set independently for each variable and for
each function, in the expanded feature or standard feature.

In the execution of the computer program, the CPU 120
loads the list processing module for interpreting and execut-
ing the source code of the program that is developed in the
information processing apparatus 100 and is embedded to the
information processing apparatus 100. FIG. 3 is an explana-
tory diagram showing a data structure that can be defined by
the list processing module and is called a symbol.

As shown in FIG. 3, the symbol 400 that can be defined by
the list processing module is constituted by a name region
401, a variable definition region 402, a function definition
region 403 and a security attribute region 404.

The name region 401 indicates a printable string table. The
name region 401, if the symbol specifies a variable, stores the
variable name, and, if the symbol specifies a function, stores
the function name. In FIG. 3, the name region 401 is indicated
as “pname.”

The variable definition region 402, if the symbol specifies
a simple variable, stores the value, and, if the symbol specifies
alist variable, stores the value indicating the list. In FIG. 3, the
variable definition region 402 is indicated as “value.”

The function definition region 403, if the symbol specifies
a function, stores the function substance. In FIG. 3, the func-
tion definition region 403 is indicated as “function.”

The security attribute region 404 stores the information
relevant to the security attribute of the symbol. Examples of
the security attribute include the readout attribute of the vari-
able, the alteration attribute of the variable, and the execution
attribute of the function. The security attribute region 404
stores an access flag showing an access permission to the
symbol, and a value indicating a table that stores an authen-
tication key for accessing the symbol.

In addition to the symbol 400 shown in FIG. 3, called cons
cells, cells for constructing a list structure are defined serially.
FIG. 4 is an explanatory diagram showing an exemplary
configuration of the cons cells 410 for constructing the list
structure. As shown in FIG. 4, the cons cell 410 is an object
including two pointers, called a CAR slot 411 and a CDR slot
412. In FIG. 4, the car0 to car9 are shown as the CAR slots
411, and the cdr0 to cdr9 are shown as the CDR slots 412.
Naturally, it goes without saying that the number of each slot
is not limited to this example.

A table for storing a name that is stored in the name region
401 of the symbol 400 is also provided. FIG. 5 is an explana-
tory diagram showing an exemplary structure of a name stor-
age table 420 for storing the name that is stored in the name
region 401 of the symbol 400. In the name storage table 420
shown in FIG. 5, names “eval”, “setq”, “cons”, “defun” and
“osaifu” are stored, and they correspond to the symbols that
are their substances, on a one-to-one basis. Reference
numeral 421 denotes a region for storing the name “eval”,
reference numeral 422 denotes a region for storing the name
“setq”, reference numeral 423 denotes a region for storing the
name “cons”, reference numeral 424 denotes a region for

10

15

20

25

30

35

40

45

50

55

60

65

8

storing the name “defun”, and reference numeral 425 denotes
a region for the name “osaifu”. Once a symbol name is input
to the name storage table 420 from the exterior of the name
storage table 420, the symbol corresponding to the input
symbol name, which is stored in the name storage table 420,
is indicated and evaluated. Here, the “osaifu” is a variable
showing the balance of an electronic money when an elec-
tronic money feature is incorporated into the information
processing apparatus 100.

Then, a table corresponding to a value that is stored in the
security attribute region 404 of the symbol 400 and that
indicates a table for storing the authentication key, is also
provided. FIG. 6 is an explanatory diagram showing an exem-
plary structure of an authentication key table 430 for storing
the authentication key. FIG. 6 shows a state in which authen-
tication keys are managed by version numbers (kv1 to kv5) in
the authentication key table 430. Reference numeral 431
denotes a region for storing a key “key1”, reference numeral
432 denotes a region for storing a key “key2”, reference
numeral 433 denotes a region for storing a key “key3”, ref-
erence numeral 434 denotes a region for storing a key “key4”,
and reference numeral 435 denotes a region for storing a key
“key5”.

FIG. 7 is an explanatory diagram showing a correspon-
dence relation of the symbol shown in FIG. 3, the cons cell
shown in FIG. 4, the name storage table shown in FIG. 5, and
the authentication key table shown in FIG. 6. As described
above, the symbol has the region indicating the table of the
printable names, the region indicating a value or a list of
values, the function attribute, and the security attribute. The
function attribute has pointers indicating the type of a func-
tion and the substance of the function, and the security
attribute has pointers indicating a security tlag, a key version
and a key. Here, FIG. 7 shows a manner in which the key
“key1” denoted by reference numeral 431 and the key “key2”
denoted by reference numeral 432 are used in the authentica-
tion key table 430 shown in FIG. 6.

Thus, the general structure of the list processing module is
called a symbol, and is constituted by the pointer to a numeri-
cal value or a list retaining numerical values, the pointer to a
function in the case of the function definition, and the pointer
indicating the table for storing the printable string.

In the embodiment, in addition to these, the pointer to the
table that retains the security attribute and the information of
two kinds of encryption keys is added to the symbol. The
pointer to one key indicates a master key, and the pointer to
the other key indicates an access key (authentication key) for
the symbol. The master key is a key with which an authenti-
cation must be performed in advance by a mutual authentica-
tion feature when altering the security attribute or access key
of the symbol. In the content evaluation, content alteration
and function execution of the information retained in a sym-
bol, if the security flag set in the symbol is on, having been
authenticated with one key added to the symbol is a require-
ment for using the symbol. The other key is a permission
authentication key with which the permission is checked
when altering the key of the symbol. For altering the access
information, it is required to be in a state of having been
authenticated with the permission authentication key.

As shown in FIG. 4, there are, called cons cells, two sets of
pointers that show a relation between symbols. They have a
structure in which each pointer indicates a cons cell indicat-
ing a symbol or another symbol.

A built-in function is written in the ROM 130, and in the
first-time power-on of the information processing apparatus
100, the built-in function written in the ROM 130 is defined in

US 9,262,128 B2

9

the symbol created in the RAM 140. In the subsequent power-
on, the symbol that has been already registered is not initial-
ized.

The above configuration has a structure that works simi-
larly when a user registers a new function.

The list processing module that the CPU 110 executes has
a configuration in which a symbol can be freely registered and
anumerical value, list and function can be freely registered to
the symbol. Then, for making use of the security feature on
the symbol to be registered, an encryption key and an access
flag are registered to the symbol. To the list processing mod-
ule that the CPU 110 executes, an encryption key that is called
a system key is set initially. In a newly registered symbol, the
key and access flag specific to the symbol can be set only in a
state of being a mode in which a mutual authentication has
been performed with the system key (in a state of being the
mode 2, described hereinafter). Also, the computer program
to be executed by the list processing module that the CPU 110
executes, has a configuration in which the definitions of a
variable and function to be used can be altered only in a state
of'being the mode in which a mutual authentication has been
performed with the system key.

In the list processing module that the CPU 110 executes,
when registering a function symbol, having been authenti-
cated with all keys for the symbols to be used in the function
is a registration requirement. The list processing module has
a structure in which when using the registered function sub-
sequently, it is only necessary to have been authenticated with
its function execution key.

So far, the structure of the computer program that is
executed by the information processing apparatus 100 shown
in FIG. 2, has been described. Next, a functional configura-
tion of the CPU 110 of the information processing apparatus
100 will be described.

FIG. 8 is an explanatory diagram showing the functional
configuration of the CPU 110 included in the information
processing apparatus 100. In the following, the functional
configuration of the CPU 110 will be described using FIG. 8.

As shown in FIG. 8, the CPU 110 is configured to include
aprogram execution unit 112, a backup unit 114 and a restor-
ing unit 116. In the CPU 110 according to an embodiment of
the present disclosure, for example, by reading out and
executing the computer program that is stored in the ROM
130, the CPU 110 can have a functional configuration shown
in FIG. 8.

The program execution unit 112 interprets and executes the
code of the computer program that is created in the procedural
language. In the embodiment, the program execution unit
112, which has the above-described feature of the list pro-
cessing module, can read the source code stored in the exter-
nal storage apparatus 180, and by interpreting the source
code, can execute the content described in the source code.

The backup unit 114 backs up, to the external storage
apparatus 180, the variable definition and function definition
in the computer program that is being executed by the pro-
gram execution unit 112, in a format that can be interpreted as
a code in the above procedural language. In Scheme that is a
script language of the Lisp family, for example, in the case of
defining the value of a variable a as an S-expression (define a
123) using the “define” for defining the value of'a variable, the
backup unit 114 backs up the variable definition of this vari-
able a as the S-expression (define a 123). Also, for example, in
the case of defining a function “add3” as an S-expression
(define (add3 x) (+x 3)), the backup unit 114 backs up the
function definition of this function “add3” as the S-expres-
sion (define (add3 x) (+x 3)). In backing up of the variable

30

35

40

45

10

definition and function definition in the computer program,
the backup unit 114 may encrypt them using the encryption/
decryption unit 120.

The restoring unit 116 reads and restores the data that the
backup unit 114 backed up. In the case where, in backing up
of the variable definition and function definition in the com-
puter program, the backup unit 114 encrypts them using the
encryption/decryption unit 120, the restoring unit 116 may
decrypt the read data using the encryption/decryption unit
120 and restore them.

By having such a configuration, the CPU 110 can interpret
and execute the code of the computer program that is created
in a procedural language, and can back up the variable defi-
nition and function definition in the code that is being
executed, in a format that the procedural language can inter-
pret with no change. By having such a configuration, it is
possible to reduce development steps in a procedural lan-
guage for the computer program of the information process-
ing apparatus 100, compared to the conventional develop-
ment steps for the computer program. So far, the functional
configuration of the CPU 110 of the information processing
apparatus 100 has been described. Next, a behavior of the
information processing apparatus 100 shown in FIG. 2 will be
described.

[2-3. Behavior of Information Processing Apparatus]

FIG. 10 is a flowchart showing a behavior of the informa-
tion processing apparatus 100 according to an embodiment of
the present disclosure. The flowchart shown in FIG. 10 shows
the behavior of the information processing apparatus 100
when the information processing apparatus 100 is powered on
and the information processing apparatus 100 executes the
list processing module. In the following, the behavior of the
information processing apparatus 100 according to an
embodiment of the present disclosure will be described with
reference to FIG. 10.

Once the information processing apparatus 100 is powered
on, the program execution unit 112 of the CPU 110 reads the
script interpretation and execution module from the ROM
130 (step S101). Once the script interpretation and execution
module is read from the ROM 130 by the program execution
unit 112 of the CPU 110 in step S101, subsequently, the
program execution unit 112 of the CPU 110 checks whether
the backup data of the source code are present in the external
storage apparatus 180 (step S102).

As a result of the judgment in the above step S102, if the
backup data of the source code are present in the external
storage apparatus 180, the program execution unit 112 of the
CPU 110 that has read the script interpretation and execution
module, reads the backup data of the source code from the
external storage apparatus 180 (step S103). In the case where
the backup data of the source code are encrypted with a key
stored in the NVRAM 150, the CPU 110 that has read the
script interpretation and execution module, decrypts the
backup data in the restoring unit 116 using the key stored in
the NVRAM 150, and reads them in the program execution
unit 112 as the script language (step S103). The script inter-
pretation and execution module that has read the backup data
as the script language, outputs an input waiting signal to the
display unit 170 and becomes a state of waiting an input from
an editor of the source code.

By reading the source code read from the external storage
apparatus 180, the script interpretation and execution module
can read the definitions of the variables and functions
described in the source code and the information of the keys
specified in the variables and functions, and can execute the
program.

US 9,262,128 B2

11

After the backup data of the source code have been read
from the external storage apparatus 180 in the above step
S103, the editor of the source code may make an alteration of
the source code (step S104). The script language that is input
from the input unit 160 by the editor of the source code is
interpreted from an external description format that the inter-
preter can interpret with no change, to an internal description
format that the script interpretation and execution module can
interpret after the interpretation by the interpreter, and then is
recorded in the RAM 140. As a result of the judgment in the
above step S102, if the backup data of the source code are not
present in the external storage apparatus 180, the source code
is newly created by the editor of the source code (step S104).

Thereafter, the editor of the source code performs a pro-
gram execution by a READ-EVAL-PRINT loop, using the
information processing apparatus 100 (step S105).

In the program creation by the editor of the source code, the
program execution unit 112 of the CPU 110 that has read the
script interpretation and execution module, always judges
whether a backup instruction is given from the editor of the
source code (step S106). For example, the editor of the source
code may give the backup instruction by operating the input
unit 160 and inputting a backup command.

If the backup instruction is given from the editor of the
source code, the backup unit 114 of'the CPU 110 that has read
the script interpretation and execution module, inversely con-
verts the contents of the Symbol table, Code table, name table
and key table shown in FIGS. 3 to 6, into the same description
format as when they were read in the script interpretation and
execution module. The backup unit 114 encrypts the
inversely converted data with the key stored in the NVRAM
150, outputs them as encrypted backup data, and then stores
them in the external storage apparatus 180 (step S107).

Here, an example of a backing up of the source code by the
backup unit 114 according to the embodiment, is shown. In
Scheme that is a script language of the Lisp family, for
example, in the case where an S-expression for a function
definition is (define (add3 x) (+x 3)), the internal representa-
tion has a structure as shown in FIG. 10A. Therefore, in
backing up of this function “add3”, the backup unit 114 backs
it up based on the internal representation shown in FIG. 10A,
such that the function definition accords with the above S-ex-
pression (define (add3 x) (+x 3)).

Also, for example, in the case where an S-expression for a
variable definition is (define a 123), the internal representa-
tion has a structure as shown in FIG. 10B. Here, suppose the
case where the variable value of this variable “a” is altered.
For example, once an S-expression for altering the variable
value of this variable “a”, (set! a 234), is input to the infor-
mation processing apparatus 100, the value of the variable “a”
is altered into “234”, and the internal representation gets to
have a structure as shown in FIG. 10C.

Then, once the backup unit 114 performs an inverse con-
version into the definition of the variable “a”, an S-expression
(define a 234) is acquired based on the internal representation
shown in FIG. 10C. Thus, in backing up, the backup unit 114
can acquire the S-expression for the variable definition from
the variable value at the time point of baking up. The same
goes for the above-described backup for the function defini-
tion, and if the function definition is altered by the editor after
the function definition has been read in the script interpreta-
tion and execution module, the backup unit 114 can acquire
the S-expression for the function definition that is in an
altered state.

Thus, by receiving the backup instruction from the editor
of'the source code and backing up a state when receiving the
instruction, for example, in the case of stopping the system

30

35

40

45

12

once and subsequently restarting the system, the startup
recovery of the system is prepared. Furthermore, if intending
to know the source code of the program, it can be read out by
a function (read-closure-code) incorporated in Scheme or the
like, or a function for a backing up, and thereby it is unnec-
essary to retain the source code in the interior of the informa-
tion processing apparatus 100 and also it is unnecessary to
manage the source code.

FIG. 11 is an explanatory diagram showing a program
development model by the information processing apparatus
100 according to an embodiment of the present disclosure. In
the information processing apparatus 100 according to an
embodiment of the present disclosure, the script interpreta-
tion and execution module that is read and executed by the
program execution unit 112 of the CPU 110, reads the backup
data of the source code stored in the external storage appara-
tus 180 at the time of startup, and decrypts the backup data
using a predetermined key if they are encrypted. The editor of
the source code inputs the source code of the program or a
function execution instruction using the input unit 160, and
the script interpretation and execution module outputs the
result to the display unit 170.

Then, once the editor of the source code inputs the backup
instruction using the input unit 160, the script interpretation
and execution module inversely converts a state at the time
point of the backup instruction, into the same description as at
the time of the reading in the script interpretation and execu-
tion module, and backs it up. In backing up, the backup unit
114 of the CPU 110 may perform an encryption using a
predetermined key.

Thus, a successive-addition-type program development is
possible by preparing the backup feature for the program, in
the script interpretation and execution module. Thereby, even
if the scale of the system is larger, it is possible to provide a
script execution processing environment that can be securely
used while growing the program. It is found that in such a
successive-addition-type program development model, the
work processes are greatly reduced compared to the conven-
tional program development model shown in FIG. 1.

The backup data are described exactly in the same format
as an ordinary script that the script interpretation and execu-
tion module receives. Therefore, the reading of the backup
data does not require another interface. Furthermore, a script
language program that is once read, is encrypted and output
with a signature, and therefore it is possible to detect a tam-
pering and protect the internal data from exposure.

In the technology that the present discloser discloses in
Japanese Patent Application No. 2011-027625, in the case
where the variables and functions are set in such a state that
the security flags are set, it is necessary to be authenticated
with the respective keys, and the former state is not recovered
merely by reading the script program. On the other hand, the
restoring method shown in an embodiment of the present
disclosure does not require an authentication at every time of
encryption key setting, resulting in a simple restart of the
system.

After the script language program has been read from files,
in some cases, the variable values or function codes are
changed by an alteration using the input unit 160 or a running
program. In the present disclosure, by a backup instruction, it
is possible to back up the changed content in the same
description format as at the time of the reading in the script
interpretation and execution module, and to obtain the final
form of the source code.

The data that are encrypted and stored as the backup data,
are decrypted by the script interpretation and execution mod-
ule and the encryption unit, and the functions, the variable

US 9,262,128 B2

13

values and the secret keys are restored, and therefore, it is
unnecessary to read the script language from the beginning, to
reconfigure the variable values, and to reconfigure the encryp-
tion keys, resulting in a fast restart of the system.

[2-4. Modifications]

In the above description, the backup data of the script that
is read by the script interpretation and execution module to be
executed in the information processing apparatus 100, have
been described as being stored in the external storage appa-
ratus 180 connected to the information processing apparatus
100. However, the storage of the backup data of the script is
not limited to this example.

FIG. 12 is an explanatory diagram showing a configuration
of'an information processing system 10' according to a modi-
fication of an embodiment of the present disclosure. Unlike
the information processing system 10 shown in FIG. 2, in the
information processing system 10' shown in FIG. 12, an
external storage apparatus 200 for storing the backup data of
the script is connected with the information processing appa-
ratus 100 via a network 190. Thus, even in a state in which the
external storage apparatus 200 for storing the backup data of
the script is connected with the information processing appa-
ratus 100 via the network 190, it is still possible to store the
backup data of the script in the external storage apparatus 200
and read the backup data of the script from the external
storage apparatus 200.

Another modification will be described. After the informa-
tion processing apparatus 100 has once read the program by
the script created in a procedural language, the CPU 110 saves
the backup data to the external storage apparatus 180 such as
a hard disk that is connected with the information processing
apparatus 100, and thereby can automatically read the backup
data. Therefore, characteristically, it is unnecessary to read
the program again through a keyboard or a network.

Meanwhile, for deleting a once-incorporated function or
variable from the backup file saved to the information pro-
cessing apparatus 100 or the external storage apparatus 180,
the delete is impossible unless using means such as an acqui-
sition and editing of the file. Specially, when the backup file is
encrypted with a specific secret key that the information
processing apparatus 100 has, even the delete by means such
as an acquisition and editing of the file is impossible unless
being decrypted with the secret key.

If continuing the alteration of the script program, disused
variables and function names are generated. The disused vari-
ables and functions not only consume the internal resource,
but also make it difficult to find whether they are still used, or
are disused any more.

Hence, a delete command may be incorporated in the script
interpretation and execution module to be executed in the
information processing apparatus 100, in order that a user can
delete unnecessary variables and functions by executing the
delete command. This results in an easy editing of the script
program.

[2-5. Hardware Configuration of Information Processing
Apparatus]

Next, a hardware configuration of the information process-
ing apparatus 100 according to an embodiment of the present
disclosure will be described in detail with reference to FIG.
13. FIG. 13 is a block diagram for explaining the hardware
configuration of the information processing apparatus 100
according to an embodiment of the present disclosure.

The information processing apparatus 100 mainly includes
aCPU 901, a ROM 903, a RAM 905, a host bus 907, a bridge
909, an external bus 911, an interface 913, an input apparatus
915, an output apparatus 917, an imaging apparatus 918, a

10

15

20

25

30

35

40

45

50

55

60

65

14

storage apparatus 919, a drive 921, a connection port 923, and
a communication apparatus 925.

The CPU 901 serves as an operation processor and a con-
troller, and controls all or some operations in the information
processing apparatus 100 in accordance with various pro-
grams recorded in the ROM 903, the RAM 905, the storage
apparatus 919 or a removable recording medium 927. The
ROM 903 stores programs, operation parameters, or the like
which are used by the CPU 901. The RAM 905 primarily
stores programs which are used in the execution of the CPU
901 and parameters which are appropriately modified in the
execution of the programs, or the like. These component
members are mutually connected via the host bus 907 made of
an internal bus such as a CPU bus.

The host bus 907 is connected to the external bus 911 such
as a PCI (Peripheral Component Interconnect/Interface) bus
via the bridge 909.

The input apparatus 915 may be an operation device which
is operated by a user, such as a mouse, a keyboard, a touch
panel, buttons, switches and a lever. The input apparatus 915
may be, for example, a remote controlunit (a so-called remote
control) using infrared light or other radio waves, or may be
an externally connected apparatus 929 such as a mobile phone
and a PDA operable in response to the operation of the infor-
mation processing apparatus 100. Further, the input apparatus
915 includes, for example, an input control circuit which
generates an input signal based on information inputted by a
user with use of the above-stated operation apparatus and
which outputs the input signal to the CPU 901. By operating
the input apparatus 915, the user of the information process-
ing apparatus 100 can input various kinds of data into the
information processing apparatus 100, and can instruct pro-
cessing operation.

The output apparatus 917 includes a device capable of
visually or audibly notifying the user of acquired information.
Examples of such a device include: a display device such asa
CRT display device, an LCD device, a plasma display device,
anEL display device, and a lamp; a speech output device such
as a speaker and a headphone set; a printer; a mobile phone;
and a facsimile. The output apparatus 917 outputs, for
example, a result obtained by various processings executed
by the information processing apparatus 100. More specifi-
cally, the display device displays a result obtained by various
processings executed by the information processing appara-
tus 100 in the form of a text or an image. The speech output
device converts an audio signal made of reproduced voice
data, sound data, or the like into an analog signal, and outputs
the analog signal.

The imaging apparatus 918 is mounted on the upper part of
a display device, for example, and is capable of imaging still
images or moving images of a user of the information pro-
cessing apparatus 100. The imaging apparatus 918 includes,
for example, a CCD (Charge Coupled Device) image sensor
or a CMOS (Complementary Metal Oxide Semiconductor)
image sensor, and converts light collected by a lens into
electric signals so as to image still images or moving images.

The storage apparatus 919 is a device for data storage
which is configured as an example of a storage section of the
information processing apparatus 100. The storage apparatus
919 includes, for example, a magnetic storage device such as
a HDD (hard disk drive), a semiconductor storage device, an
optical storage device, or a magneto-optical storage device.
The storage apparatus 919 stores programs and various data
to be executed by the CPU 901, various data obtained from
the outside, such as acoustic signal data and image signal
data.

US 9,262,128 B2

15

The drive 921 is a reader writer for recording media, which
is incorporated in or externally attached to the information
processing apparatus 100. The drive 921 reads information
recorded on the attached removable recording medium 927,
such as a magnetic disc, an optical disc, a magneto-optical
disc, and a semiconductor memory device, and outputs the
read information to the RAM 905. The drive 921 can also
write data in the attached removable recording medium 927,
such as a magnetic disc, an optical disc, a magneto-optical
disc, and a semiconductor memory device. The removable
recording medium 927 includes, for example, DVD media,
Blu-ray media, a compact flash (registered trademark) (Com-
pactFlash, CF), a memory stick, an SD memory card (secure
digital memory card), or the like. The removable recording
medium 927 may also be, for example, an IC card (integrated
circuit card) or an electronic device that incorporates a non-
contact IC chip, and the like.

The connection port 923 is a port used to directly connect
devices to the information processing apparatus 100, for
example, a USB (universal serial bus) port, an IEEE1394 port
such as i-Link, or the like, and an SCSI (small computer
system interface) port, an RS-232C port, an optical audio
terminal, and an HDMI (high-definition multimedia inter-
face) port. By connecting the externally connected apparatus
929 to the connection port 923, the information processing
apparatus 100 directly acquires acoustic signal data and
image signal data from the externally connected apparatus
929, or provides the externally connected apparatus 929 with
the acoustic signal data and the image signal data.

The communication apparatus 925 is, for example, a com-
munication interface including a communication device or
the like for connection to a communication network 931. The
communication apparatus 925 may be, for example, a com-
munication card for a wired or wireless LAN (local area
network), Bluetooth, or WUSB (wireless USB), and the like.
Inaddition, the communication apparatus 925 may be a router
for optical communication, a router for ADSL (asymmetric
digital subscriber line), a modem for various kinds of com-
munications, or the like. The communication apparatus 925
can transmit and receive signals and the like to and from, for
example, the Internet or other communication devices based
on a predetermined protocol such as TCP/IP. In addition, the
communication network 931 connected to the communica-
tion apparatus 925 may be made of a network connected in a
wired or wireless manner or the like, and may be, for example,
the Internet, a home LAN, infrared communication, radio
wave communication, satellite communication, or the like.
<3. Conclusion>

As described above, according to an embodiment of the
present disclosure, the information processing apparatus 100
that can interpret and execute a procedural programming
language, based on a backup instruction by a user (an editor of
a source code), inversely converts a state at the time point of
the backup instruction, into the same description as at the time
of'a reading in the script interpretation and execution module,
and thereby backs it up to the external storage apparatus 180
connected with the information processing apparatus 100 (or
the external storage apparatus 200 connected with the infor-
mation processing apparatus 100 via the network 190). In
backing up of the state at the time point of the backup instruc-
tion, it is possible to encrypt it using a key stored in the
NVRAM 150.

The data that are backed up to the external storage appara-
tus 180 connected with the information processing apparatus
100 (or the external storage apparatus 200 connected with the
information processing apparatus 100 via the network 190),
are read and restored by the script interpretation and execu-

10

15

20

25

30

35

40

45

50

55

60

65

16

tion module, at the time of startup of the information process-
ing apparatus 100. The restoring does not require an authen-
tication with a key in a state in which security flags are set to
variables and functions, unlike the technology that the present
discloser discloses in Japanese Patent Application No. 2011-
027625, and therefore it is possible to recover the former state
merely by reading the script program.

The steps shown in the flowchart in the above embodiment
include not only processes to be performed in time series
along the described order, but also processes to be executed in
parallel or independently, which are not necessarily pro-
cessed in time series. Needless to say, even in steps to be
processed in time series, the order can be appropriately
changed in some cases.

Furthermore, a series of processes described in the speci-
fication may be executed by hardware, software or a compos-
ite configuration of hardware and software. In the case of
executing the processes by software, a program in which a
process sequence is recorded may be installed in the memory
of a computer incorporated in dedicated hardware, to be
executed, or the program may be installed in a general-pur-
pose computer that can execute various processes, to be
executed.

The preferred embodiments of the present invention have
been described above with reference to the accompanying
drawings, whilst the present invention is not limited to the
above examples. A person skilled in the art may find various
alternations and modifications within the scope of the
appended claims, and it should be understood that they will
naturally come under the technical scope of the present inven-
tion.

Additionally, the present technology may also be config-
ured as below.

1

An information processing apparatus including:

a program execution unit configured to read, interpret and
execute a code of a computer program that is created in a
procedural language; and

a backup unit configured to create a backup in a format in
which a variable definition and a function definition in the
code being executed by the program execution unit are inter-
pretable as a code in the procedural language.

@

The information processing apparatus according to (1),
including:

a key retention unit configured to retain a key that is pro-
tected by a tamper resistant mechanism; and

an encryption and decryption unit configured to perform an
encryption and a decryption using the key,

wherein the backup unit encrypts a value of a variable
defined by the program execution unit at a time point of a
backing up, a value of the variable altered by the program, the
function definition, and information that is set to the program
execution unit and is retained by the program execution unit,
with the encryption and decryption unit, and then creates the
backup.

)

The information processing apparatus according to (2),
including:

a restoring unit configured to read the backup created by
the backup unit, and to decrypt and restore the read backup
using the encryption and decryption unit.

4)

The information processing apparatus according to (3),
wherein the backup unit checks for presence of the backup,
and when the backup is present, the program execution unit
reads the backup.

US 9,262,128 B2

17
®)

The information processing apparatus according to any
one of (1) to (4), wherein the program execution unit deletes
the variable definition or the function definition in the read
code.

(6)

An information processing method including:

interpreting and executing a code of a computer program
that is created in a procedural language; and

creating a backup in a format in which a variable definition
and a function definition in the code being executed is inter-
pretable as a code in the procedural language.

O

A computer program for causing a computer to execute:

interpreting and executing a code of a computer program
that is created in a procedural language; and

creating a backup in a format in which a variable definition
and a function definition in the code being executed are inter-
pretable as a code in the procedural language.

REFERENCE SIGNS LIST

10 information processing system
100 information processing apparatus
110 CPU

112 program execution unit

114 backup unit

116 restoring unit

120 encryption/decryption unit

130 ROM

140 RAM

150 NVRAM

160 input unit

170 display unit

180, 200 external storage apparatus

The invention claimed is:

1. An information processing apparatus comprising:

a program execution unit configured to read, interpret and
execute a code of a computer program that is created in
aprocedural type programming language which enables
security to be set independently for a variable and a
function,

wherein the information defining a value of the variable in
the code and information defining a value of the function
in the code are created in a predetermined format of the
procedural type programming language by a user; and

a backup unit configured to create a backup, in the prede-
termined format, ofthe information defining the value of
the variable and the information defining the value of the
function in the code of the procedural type programming
language.

2. The information processing apparatus according to

claim 1, comprising:

a key retention unit configured to retain a key that is pro-
tected by a tamper resistant mechanism; and

10

15

20

35

40

45

50

18

an encryption and decryption unit configured to perform an

encryption and a decryption using the key,
wherein the backup unit encrypts the value of a variable
defined by the program execution unit at a time point of
a backing up, a value of the variable altered by the
program, the value of the function, and information that
is set to the program execution unit and is retained by the
program execution unit, with the encryption and decryp-
tion unit, and then creates the backup.
3. The information processing apparatus according to
claim 2, comprising: a restoring unit configured to read the
backup created by the backup unit, and to decrypt and restore
the read backup using the encryption and decryption unit.
4. The information processing apparatus according to
claim 3, wherein the backup unit checks for presence of the
backup, and when the backup is present, the program execu-
tion unit reads the backup.
5. The information processing apparatus according to
claim 1, wherein the program execution unit deletes the infor-
mation definition value of the variable or the information
defining the value of the function in the read code.
6. An information processing method for use with an infor-
mation processing apparatus having a processing device, said
method comprising:
interpreting and executing, by use ofthe processing device,
a code of a computer program that is created in a proce-
dural type programming language which enables secu-
rity to be set independently for a variable and a function,

wherein information defining a value of the variable in the
code and information defining a value of the function in
the code are created in a predetermined format of the
procedural type programming language by a user; and

creating a backup, in the predefined format, of the infor-
mation defining the value of the variable and the infor-
mation defining the value of the function in the code of
the procedural type programming language.
7. A non-transitory computer-readable storage medium
having stored thereon, a set of computer-executable instruc-
tions for causing a computer to perform steps comprising:
interpreting and executing a code of a computer program
that is created in a procedural type programming lan-
guage which enables security to be set independently for
a variable and a function,

wherein information defining a value of the variable in the
code and information defining a value of the function in
the code are created in a predetermined format of the
procedural type programming language by a user; and

creating a backup, in the predetermined format, of the
information defining the value of the variable and the
information defining the value of the function in the code
of the procedural type programming language.

8. The information processing apparatus according to
claim 1, in which the procedural type programming language
is LISP.

